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Accelerated Computing as the Path Forward for HPC 
Accelerated systems have become the new standard for high performance computing (HPC) as GPUs 

continue to raise the bar for both performance and energy efficiency.  In 2012, Oak Ridge National 

Laboratory announced what was to become the world’s fastest supercomputer, Titan, equipped with 

one NVIDIA® GPU per CPU – over 18 thousand GPU accelerators.  Titan established records not only in 

absolute system performance but also in energy efficiency, with 90% of its peak performance being 

delivered by the GPU accelerators.   

Since Titan, a trend has emerged toward heterogeneous node configurations with larger ratios of GPU 

accelerators per CPU socket, with two or more GPUs per CPU becoming common as developers 

increasingly expose and leverage the available parallelism in their applications.  

Recently, the U.S. Department of Energy announced its plans to build two of the world’s fastest 

supercomputers – the Summit system at Oak Ridge National Laboratory and the Sierra system at 

Lawrence Livermore National Laboratory – which are each expected to have well over 100 petaFLOPS of 

peak performance.  Although each system is unique, they share the same fundamental multi-GPU node 

architecture. 

While providing a vehicle for scaling single node performance, multi-GPU applications can find 

themselves constrained by interconnect performance between the GPUs.  Developers must overlap data 

transfers with computation or carefully orchestrate GPU accesses over PCIe interconnect to maximize 

performance.  However, as GPUs get faster and GPU-to-CPU ratios climb, a higher performance node 

integration interconnect is warranted.  Enter NVLink. 

NVLink: High-Speed GPU Interconnect 
NVLink is an energy-efficient, high-bandwidth path between the GPU and the CPU at data rates of at 

least 80 gigabytes per second, or at least 5 times that of the current PCIe Gen3 x16, delivering faster 

application performance.  NVLink is the node integration interconnect for both the Summit and Sierra 

pre-exascale supercomputers commissioned by the U.S. Department of Energy, enabling NVIDIA GPUs 

and CPUs such as IBM POWER to access each other’s memory quickly and seamlessly.  NVLink will first 

be available with the next-generation NVIDIA Pascal™ GPU in 2016. 

In addition to speeding CPU-to-GPU communications for systems with an NVLink CPU connection, 

NVLink can have significant performance benefit for GPU-to-GPU (peer-to-peer) communications as 

well.  This paper focuses on these peer-to-peer benefits from NVLink.  We will show how systems with 

next-generation NVLink-interconnected GPUs are projected to deliver considerable application speedup 

compared to systems with GPUs interconnected via PCIe. 
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Figure 1: NVLink delivers 80 GB/s or higher bandwidth to enable faster communication in a node. 

Server Configuration with NVLink 
In the following sections of this paper, we analyze the performance benefit of NVLink for several 

algorithms and applications by comparing model systems based on PCIe-interconnected next-gen GPUs 

to otherwise-identical systems with NVLink-interconnected GPUs.  GPUs are connected to the CPU using 

existing PCIe connections, but the NVLink configurations augment this with interconnections among the 

GPUs for peer-to-peer communication.  The following analyses assume future-generation GPUs with 

performance higher than that of today’s GPUs, so as to better correspond with the GPUs that will be 

contemporary with NVLink.   

Table 1: List of assumptions in this paper for NVLink application performance analysis. 

Assumptions NVLink PCIe Gen3 

Connection Type  4 connections 16 lanes 

Peak Bandwidth 80 GB/s 16 GB/s 

Effective Bandwidth 64 GB/s 12 GB/s 

GPU Future-generation GPU 

 

For purposes of this study, we will assume that each GPU has four NVLink connection points, each 

providing a point-to-point connection to another GPU at a peak bandwidth of 20 GB/s.  We will further 

assume an effective bandwidth similar to what is seen on PCIe, which is around 80% of peak, yielding an 

assumed effective bandwidth of 16 GB/s per NVLink connection in both directions simultaneously.  

Multiple NVLink connections can be bonded together, multiplying the available interconnection 

bandwidth between a given pair of GPUs. 

25

NVLINK: HIGH-SPEED GPU INTERCONNECT

Tightly Integrates CPU and GPU for Fast Application Performance

NVLink
80 GB/s or higher
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The first scenario, shown in Figure 2, compares a pair of configurations with two GPUs each, referred to 

throughout this paper as 2-GPU-PCIe and 2-GPU-NVLink.  2-GPU-NVLink provides a fast NVLink 

interconnect between the two GPUs, bonding together all four of the NVLink interconnection points for 

a total peak bandwidth of 80 GB/s (64 GB/s effective) per direction between them.  By contrast, 2-GPU-

PCIe, reflecting a common configuration seen in production today, requires that peer-to-peer 

communication share the same PCIe links as are used for communication with the CPU.   

 

Figure 2: Comparing 2-GPU topologies with NVLink and PCIe.  GPU0 and GPU1 are connected with 80 GB/s peak bandwidth 
when using NVLink. 

The second scenario, shown in Figure 3, compares a pair of configurations with four GPUs each, referred 

to as 4-GPU-PCIe and 4-GPU-NVLink.  4-GPU-PCIe uses a PCIe tree topology, again mirroring a 

configuration used commonly today.  4-GPU-NVLink enhances this by providing point-to-point 

connections with either one or two NVLink connections per pair of GPUs, yielding 16 GB/s or 32 GB/s 

effective bandwidth per direction per pair, respectively. 

 

Figure 3: Comparing 4-GPU topologies with NVLink and PCIe.  In 4-GPU-NVLink, GPU0 and GPU1 have 40 GB/s peak 
bandwidth between them, as do GPU2 and GPU3.  The other peer-to-peer connections have 20 GB/s peak bandwidth. 

 

APPLICATION 1: MULTI-GPU EXCHANGE AND SORT 
Sorting is an important algorithmic pattern used throughout computing.  In this section, we will look at 

the performance of a multi-GPU exchange and sort algorithms. 

The multi-GPU exchange algorithm exchanges values on GPUs according to a hashing function.  This 

involves locally sorting based on the hash and then sending data via an all-to-all communication 

algorithm to the final location.  The multi-GPU sorting algorithm first performs the exchange as a coarse-

grained “sort” (binning) and then sorts all the binned keys locally to complete the overall sort. 
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The exchange algorithm begins with data evenly distributed across multiple GPUs as shown below. 

Original Data 

8 3 7 4 6 1 9 2  7 5 3 8 2 0 1 9 

In this diagram, the color indicates which device the original data began on.   

The first step is to hash the data to determine which GPU’s bin each element should be placed in.  For 

sorting, this might be as simple as extracting the highest order bits, but in theory we could apply any 

arbitrary hashing function to determine the keys (i.e., the destination bins).  For this example, we will 

use the hash function ceil(x/5), which produces the following keys given the data above. 

Calculated Keys 

1 0 1 0 1 0 1 0  1 1 0 1 0 0 0 1 

Next we locally sort the data based on the hashed keys, yielding the following.  Note that since we know 

these keys are in the range of [0, NUM_GPUS), we can restrict the sorting to only a couple of bits. 

Locally-sorted Data 

3 4 1 2 8 7 6 9  3 2 0 1 7 5 8 9 

Locally-sorted Keys 

0 0 0 0 1 1 1 1  0 0 0 0 1 1 1 1 

Next, we transfer all data with a key of 0 to device 0 and all data with a key of 1 to device 1.  This 

becomes an all-to-all exchange among GPUs, producing the following. 

Exchanged Data 

3 4 1 2 3 2 0 1  8 7 6 9 7 5 8 9 

Multi-GPU sorting is a simple extension of the above.  After exchanging the data, we simply sort the data 

again locally to produce the final sorted list. 

Fully-sorted Data 

0 1 1 2 2 3 3 4  5 6 7 7 8 8 9 9 

Here we can see the final list has been completely sorted.  For many applications, the initial data 

exchange is all that is needed.  Thus we will model both the exchange and the final sort separately. 
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Performance Considerations 
The exchange algorithm can be easily pipelined by operating on small portions of the domain.  The first 

step of the pipeline is to perform the local sort on the generated keys; the second is to perform the all-

to-all exchange.  This allows the initial sorting and the exchange to be completely overlapped.  For the 

full multi-GPU sorting algorithm, the final local sort cannot begin until all data has arrived, so this 

portion cannot be pipelined with the other two. 

If we assume the original data is randomly distributed among GPUs following a uniform random 

distribution, then each GPU must communicate W*N/P bytes of data to every other GPU, where W is 

the size of each element in bytes, N is the number of elements per GPU, and P is the number of GPUs. 

In a PCIe tree topology, the communication is limited by the bisection bandwidth.  Each GPU must 

communicate half of its data (N/2) across the top link in the system, and there are P/2 devices all trying 

to communicate across the same PCIe lanes in the same direction. 

On an NVLink system, however, the communication can occur in parallel, because there are dedicated 

links between all pairs of GPUs. 

Performance Projections 
Figure 4 shows the speedup of multi-GPU exchange for the 2-GPU scenario, showing performance of 2-

GPU-NVLink relative to 2-GPU-PCIe for this algorithm, and for the 4-GPU scenario, showing performance 

of 4-GPU-NVLink relative to 4-GPU-PCIe. 

  

Figure 4: Multi-GPU exchange performance in 2-GPU and 4-GPU configurations, comparing NVLink-based systems to PCIe-
based systems. 

0.0x

1.0x

2.0x

3.0x

4.0x

5.0x

PCIe-based NVLink-based

R
e

la
ti

ve
 S

p
e

e
d

u
p

 v
s 

P
C

Ie
-b

as
e

d
 S

ys
te

m

* based on future-generation GPU

Multi-GPU Exchange Speedup: 2 GPUs

0.0x

1.0x

2.0x

3.0x

4.0x

5.0x

6.0x

PCIe-based NVLink-based

R
e

la
ti

ve
 S

p
e

e
d

u
p

 v
s 

P
C

Ie
-b

as
e

d
 S

ys
te

m

* based on future-generation GPU

Multi-GPU Exchange Speedup: 4 GPUs



8 
 

0.50x

0.75x

1.00x

1.25x

1.50x

PCIe-based NVLink-based

R
e

la
ti

ve
 S

p
e

e
d

u
p

 v
s 

P
C

Ie
-b

as
e

d
 S

ys
te

m

* based on future-generation GPU

Multi-GPU Sort Speedup: 4 GPUs

As mentioned above, the performance of this exchange algorithm depends on the available interconnect 

bandwidth.  The NVLink configurations, having both higher bandwidth as well as point-to-point rather 

than tree-style topology, show much better scaling as the number of GPUs and the relative speed of 

those GPUs increases.  

Figure 5 illustrates the speedup due to NVLink for multi-GPU sort in both the 2-GPU and the 4-GPU 

scenario. 

 

Figure 5: Multi-GPU sorting performance in 2-GPU and 4-GPU configurations, comparing NVLink-based systems to PCIe-based 
systems. 

These comparisons show clearly that multi-GPU exchange and sorting both benefit significantly from 

NVLink.  Multi-GPU exchange – and sorting by extension – requires significant communication among 

GPUs, exceeding what a PCIe tree topology can deliver. 

 

APPLICATION 2: FAST FOURIER TRANSFORM (FFT) 
Fast Fourier Transform (FFT) is an efficient algorithm to compute the discrete Fourier transform (DFT), 

which converts a sampled function into the frequency domain.  FFT is used pervasively throughput 

computing, with applications in numerous areas such as signal and image processing, partial differential 

equations, polynomial multiplication, and large integer multiplication. 

Direct computation of the DFT requires N2 time for an input of size N, as it is essentially a matrix-vector 

multiplication.  Through smart data manipulation, however, an FFT algorithm achieves a running time of 

order N*log(N).  For sufficiently large inputs, this can result in a speedup of several orders of 
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magnitude.  FFT is so fast, actually, that the data movement it requires ultimately cannot keep up with 

today’s computing power, meaning that FFT is bandwidth-bound. 

By way of illustration, consider computing the Fourier transform of a three-dimensional cube of data 

with k3 points (in the figures below, k=16). 

 

As fast as FFT is algorithmically, large FFTs are still a common application bottleneck.  A logical way to 

accelerate them is to divide the work among multiple processors.  To parallelize using two GPUs, for 

example, we might start by splitting the volume into halves, one per GPU. 

  

The next step is to compute the 2D FFT of each two-dimensional slice of the data.  These can be 

computed entirely using data local to a single GPU, as illustrated here by the slice shown in red. 

                                 

2D FFTs 
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To complete the 3D FFT, we must further transform along the other axis (here, the horizontal one). 

However, any slice in the third dimension requires data that is spread across the two GPUs, as with the 

green horizontal slice shown here, requiring a data exchange step. 

  

This is a multi-dimensional variant of the exchange used in the sorting example presented above 

(alternatively, an inter-GPU transposition).  Ultimately, half of each GPU’s data (one quarter of the 

original volume) must migrate to the other GPU before the final pass can be completed.  

 

Performance Projections 
Fortunately, each slice of the data at a given stage of the FFT can be operated on independently, so 

computation and data exchange can be overlapped by pipelining.  We found that a very good 

performance/effort balance is to split each GPU’s data into eight slices, transferring data immediately 

after computation completes for a given slice. This achieves performance within a few percentage points 

of the theoretical peak for larger sizes. 

On a 2-GPU-PCIe system, the performance obtained computing the single precision complex-to-complex 

3D FFT of a 2563 volume is quite similar to the performance that could be obtained by a single GPU 

computing the same transform locally (where no communication step is needed); in other words, the 

cost of communicating over PCIe leads to poor scaling for a workload of this size.  Larger problems, say 
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5123, are able to scale performance on multiple GPUs over PCIe, but ideally we would like smaller 

problems to scale as well. 

With NVLink, our 3D FFT performance model shows that we can achieve near-perfect scaling on a 2563 

problem, as Figure 6 shows.  Such scaling requires more than the 12 GB/s per direction that PCIe can 

deliver, but it can be achieved with the 32 GB/s or higher per direction aggregate NVLink bandwidth 

seen in the 2-GPU-NVLink and 4-GPU-NVLink configurations.  Moreover, the algorithm sketched above 

can easily extend to more than two GPUs; near-perfect scaling would also be achieved on 4 GPUs. 

 

Figure 6: 3D FFT performance in 2-GPU configurations.  NVLink-connected GPUs deliver over 2x speedup. 

NVLink brings one more important benefit to multi-GPU execution of FFTs: it allows smaller input sizes 

to be executed with lower latency when multiple GPUs are available.  With PCIe, only larger inputs such 

as 5123 benefit from multi-GPU scaling.  With NVLink, the break-even point is much lower, enabling 

multi-GPU performance scaling for sizes that are far too small to show a benefit when GPUs are 

connected to each other via PCIe. 

 

APPLICATION 3: AMBER- MOLECULAR DYNAMICS (PMEMD) 
AMBER is an important molecular dynamics application, which simulates the movements of atoms and 

molecules interacting in a system using CUDA.  Numerous methods exist for such simulations.  In this 

document, we focus on the particle-mesh Ewald’s (PME) method, which is popular due to its speed 

without excessive loss of fidelity: rather than simply truncating the interactions at some cutoff distance, 

PME allows periodic boundaries to be employed in a simulation with the electrostatic interactions 

computed out to infinity.  When combined with a short-range cutoff that partitions the electrostatic 

calculation into direct-space and reciprocal-space components, it reduces the cost of the calculation to 

0.0x

0.5x

1.0x

1.5x

2.0x

2.5x

PCIe Gen3 x16 NVLink

R
e

la
ti

ve
 S

p
e

e
d

u
p

3D FFT Performance: 2-GPU Scenario
Complex-to-complex fp32, 2563 3D transform

2 GPUs connected with NVLink vs PCIe

* based on future-generation GPU 



12 
 

order N for the direct-space part (through use of nonbond interaction lists) and to order N*log(N)for 

the reciprocal-space sum. This compares with N2 or higher complexity for direct-space-only methods.  

AMBER's PMEMD implementation has been heavily optimized and designed for GPU peer-to-peer 

communication and scales on current hardware to 4 GPUs for a single instance (or to many thousands of 

GPUs when run within a replica exchange paradigm).  Conceptually, the PME approach combines two 

major algorithms: 

 An N-body simulation for non-bonded forces in real space; and 

 An FFT in order to calculate long-range interactions in Fourier space. 

 

Figure 7: Illustration of the two cases in PME.  In blue are the atoms within a certain radius of a given target atom (typically 8 
to 10 angstroms) whose interactions are computed using a pairwise additive N-body simulation; in red are the atoms outside 
this radius whose interaction are computed using an FFT-based algorithm. 

These two parts of the calculation, illustrated in Figure 7, can be carried out asynchronously on each 

time step, with the corresponding fractional forces on each atom being summed prior to the integration 

step.  One approach to multi-GPU PME is to compute the FFT for long-range interactions on a single 

GPU, while dividing the non-bonded forces across the remaining GPUs (possibly also sharing the GPU 

used for FFT with some of the direct space work), given that scaling the FFT across multiple GPUs is 

communication-heavy as described in the previous section and that the FFT grid sizes are typically fairly 

small (48 to 128 in each dimension).  However, even while keeping the FFT on a single GPU, the PME 

approach still requires significant communication to scatter the results of both the direct-space 

(pairwise-additive) and the reciprocal-space (FFT) steps to the other GPUs, which is particularly 

problematic for the tree topologies used with PCIe. 

Performance Considerations 
As the overall performance of this application is difficult to model analytically, we profiled a typical time-

step for a PME simulation in the microcanonical ensemble (also known as NVE) benchmarks, splitting 

the measured time into the following categories: 
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 N-body (FLOPS-limited) 

 FFT (memory bandwidth-limited) 

 Device-to-device communication (interconnect bandwidth-limited) 

 All other kernels (which we can assume are primarily memory bandwidth-limited) 

 Synchronization overhead 

These measurements of relative percent time spent in each of these operations allows us to model the 

performance when any combination of computation, memory bandwidth, and/or interconnect 

bandwidth is improved.  For example, comparing relative performance on 2-GPU-PCIe and 2-GPU-

NVLink is straightforward for this application; we simply apply the ratio of the bandwidths to the 

fraction of application time spent on device-to-device transfers. 

4-GPU-PCIe to 4-GPU-NVLink comparison at first appears somewhat more complex, since the 

communication step scatters data among all pairs of GPUs, and effective all-pairs bandwidths in this 

situation are asymmetric. However, consider the exchange in two stages, with the first communicating 

between GPUs 0 and 1 and between GPUs 2 and 3. 

 

Now GPUs 0 and 1 both hold the sum of their data, and likewise for GPUs 2 and 3.  We now sum across 

GPU 0 and 2 and across GPUs 1 and 3. 

 

All four GPUs now hold the same sum.  In 4-GPU-PCIe, the first of these steps runs at full PCIe 

bandwidth, while the second step has to share the single link at the top of the PCIe tree between the 

two switches.  In 4-GPU-NVLink, the first step takes advantage of two NVLink connections between each 

pair of GPUs, while the second step pairs GPUs connected by only a single NVLink.  In both cases, the 

effective bandwidth for the second step is halved due to the nature of the topology, so we can apply a 

uniform speedup factor across both stages to determine the expected speedup due to NVLink. 
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Performance Projections 
As explained above, relative performance is projected by simply applying the ratio of the bandwidths to 

the fraction of application time spent on device-to-device transfers.  Figure 8 illustrates the results of 

this comparison for the 4-GPU scenario across a range of different test cases. 

 

Figure 8: Up to 50% performance boost for various AMBER models comparing 4-GPU configurations. 

For all of these benchmarks, NVLink provides a clear advantage over PCIe, yielding a dramatic 30-50% 

improvement for four GPUs, just by replacing the interconnection among them.  

 

APPLICATION 4: ANSYS FLUENT- COMPUTATIONAL FLUID DYNAMICS 
ANSYS Fluent is a popular Computational Fluid Dynamics (CFD) package, representative of a wide class 

of CFD applications.  For our CFD study, we chose Fluent’s truck_14m benchmark, which represents a 

typical external aerodynamics problem.  This case has around 14 million cells of mixed type and uses an 

implicit coupled solver with the k-e turbulence model. 

The main computational part for this benchmark is a coupled linear solver that uses the Flexible 

Generalized Minimal Residual method (FGMRES) preconditioned by an algebraic multigrid (AMG).  In 

Fluent 14.5 and later versions, the linear solver is GPU-accelerated using the NVIDIA AmgX library.  We 

have captured profiles of typical cases in AmgX as used in truck_14m, yielding a model of time spent in 

various operations that allows us to investigate the benefits of NVLink for CFD applications.  
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Performance Projections 
The execution time of the AMG timestep can be broken down into two main phases: the setup phase 

and the solve phase. During the setup phase, the multigrid hierarchy is created, while during the solve 

phase, FGMRES iterations are performed to update the solution vector until a desired residual 

convergence is achieved. 

 

Figure 9: Illustration of the multiple resolutions of the multigrid hierarchy constructed during the setup phase. 

AMG's performance depends mainly on the efficiency of BLAS Level 1 operations, sparse matrix-vector 

multiplication (SpMV), and point-to-point communication.  The most significant factor for performance 

is memory bandwidth, hence AMG's performance is more sensitive to hardware capabilities (high 

memory bandwidth is required) than to software optimization.  With increased memory bandwidth in 

future GPUs, we can expect significant improvement in the per-GPU performance of these kernels, 

especially in the solve phase. 

AmgX transfers data between the CPU and GPU at several points during its execution using both 

synchronous and asynchronous transfer mechanisms.  For purposes of this study, the transfer that is 

significant is the (synchronous) copy of MPI buffers before and after each MPI exchange; the message 

sizes vary from a few bytes to a few dozen megabytes.  We must complete these synchronous transfers 

as rapidly as possible, because the GPU is basically idle during the copies, and Amdahl’s Law applies.  

With NVLink, these transfers will accelerate in direct proportion to the relative interconnect bandwidths, 

yielding a clear benefit for Fluent, as shown in Figure 10. 
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Figure 10: ANSYS Fluent gains over 25% speedup with NVLink comparing 2-GPU configurations. 

 

APPLICATION 5: LATTICE QUANTUM CHROMODYNAMICS (LQCD) 
QUDA “QCD on CUDA” is a library that provides GPU acceleration for legacy lattice quantum 

chromodynamics (LQCD) applications, including Chroma, MILC, and others.  For LQCD simulations, the 

dominant computational cost is in the iterative solution of a sparse linear system, where the sparse 

matrix is a radius-one finite-difference stencil (the Wilson dslash operator) acting on a four-

dimensional hypercubic lattice (grid). 

Multi-GPU Implementation 
In deploying these computations on multiple GPUs, a simple domain-decomposition strategy is utilized, 

where each GPU is responsible for updating a distinct contiguous sub-volume of the overall problem.  To 

update the sites at the sub-domain boundaries, a boundary exchange must occur between logically 

neighboring GPUs.  Figure 11 illustrates this sort of domain decomposition in two dimensions. 

0.50x

0.75x

1.00x

1.25x

1.50x

2-GPU-PCIe 2-GPU-NVLink

R
e

la
ti

ve
 S

p
e

e
d

u
p

 v
s 

2
-G

P
U

-P
C

Ie

*based on future-generation GPU

ANSYS Fluent Speedup
2 GPUs Connected with NVLink vs PCIe



17 
 

 

Figure 11: Two-dimensional partitioning scheme employed by QUDA on 4 GPUs 

Performance Projection 
The dslash kernel is split into two parts: one for update of the interior (non-boundary) regions entirely 

local to a given GPU and one for update of the boundary regions.  In order for the performance to scale 

with the number of GPUs, the application of dslash to the interior regions should be overlapped with 

the exchange of boundary data among adjacent GPUs.  QUDA uses peer-to-peer memory transfers 

among pairs of adjacent GPUs to allow this concurrency between computation and inter-GPU transfers. 

Given the uniform nature of this problem, we can model the expected performance of such an approach 

using relatively few parameters: 

 Memory bandwidth: the performance of the local dslash kernels are largely memory 
bandwidth-limited. 

 Interconnect bandwidth: this determines how fast the boundary exchange can occur between 
neighboring GPUs. 

 The local sub-volume size per GPU: the surface-to-volume ratio dictates the communication-to-
computation ratio. 

 
Comparing the relative performance of the Wilson dslash computation on 4-GPU-NVLink and 4-GPU-
PCIe configurations, Figure 12 shows that the NVLink configuration outperforms PCIe significantly.  This 
is driven by the increase in computational performance of the future-generation GPU as enabled by 
NVLink. 
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Figure 12: LQCD dslash benchmark in 4-GPU configurations. 

 

SUMMARY 
The U.S. Department of Energy’s announcement of the Summit and Sierra supercomputers puts it in the 

position to lead the world into the exascale era.  Many technological innovations play a role in the 

architecture of these pre-exascale systems, but NVLink is one of the most important ingredients to 

pull the system nodes together.  The NVLink high-speed interconnect not only provides a fast path for 

CPUs to communicate with GPUs, but it allows multiple GPUs to share data with unrivaled performance. 

In this study, we analyzed several algorithms and applications familiar to the industry.  NVLink is 

projected to deliver significant performance boost – up to 2x in many applications – simply by replacing 

the PCIe interconnect for communication among peer GPUs.  This clearly illustrates the growing 

challenge NVLink addresses: as the GPU computation rate grows, GPU interconnect speeds must scale 

up accordingly in order to see the full benefit of the faster GPU.  Similarly, as both CPUs and GPUs 

improve in next-generation systems, the speed of the CPU-to-GPU interconnection must continue to 

grow beyond that of PCIe Gen3.   

NVLink delivers the bandwidth to keep up with the ever-increasing performance of GPUs for several 

generations of GPU architectures to come. 
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